由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow格式来使用。...
Keras 2.X版本后可以很方便的支持使用多GPU进行训练了,使用多GPU可以提高我们的训练过程,比如加速和解决内存不足问题。
刚开始pip的最新版本的keras,找不到keras.models、 keras.layers
在神经网络中,我们有很多超参数,手动调整超参数非常困难。因此,我们可以使用Keras Tuner,这使得调整神经网络的超参数变得非常简单。就像你在机器学习中看到的网格搜索或随机搜索一样。...
Keras 最初是作为 Theano 的一个方便的附加组件而发展起来的,长久以来,Keras首早先开始支持Tensorflow,然后完全成为其中的一部分。然而,我们的文章不会致力于讲述这个框架的复杂命运,而是它的功能。...
Optuna 是一个最先进的自动超参数调整框架,完全用 Python 编写。在过去的 2 年里,Kaggle社区一直在广泛使用它,具有巨大的竞争力。在本文中,我们将有一个实际操作的方法,并了解它的工作原理。...