在现实生活中,通常只能使用一个小数据集。基于少量观测数据所训练出的模型往往会过度拟合,产生不准确的结果。所以即使可用的数据是极其有限的,也需要了解如何避免过度拟合,并获得准确的预测。...
第 10 章介绍了人工神经网络,并训练了第一个深度神经网络。 但它非常浅,只有两个隐藏层。 如果你需要解决非常复杂的问题,例如检测高分辨率图像中的数百种类型的对象,该怎么办? 你可能需要训练更深的 DNN,也许有 10 层或更...
来源:Transfer Learning in Natural Language Processing Tutorial (NAACL 2019)
相关概念:灾难遗忘 (McCloskey&Cohen, 1989; French, 1999) :一个模型忘记了它最初受过训练的任务
机器学习技术在许多领域取得了重大成功,但是,许多机器学习方法只有在训练数据和测试数据在相同的特征空间中或具有相同分布的假设下才能很好地发挥作用。当分布发生变化时,大多数统计模型需要使用新收集的训练数据重建模...
Attention is not explanation | Attention is not not explanation
本文转载自公众号「哈工大SCIR」(微信ID:HIt_SCIR),该公众号为哈尔滨工业大学社会计算与信息检索研究中心(刘挺教授为中心主任)的师生的信息分享平台,本文作者为哈工大SCIR 徐啸。...
不用怀疑,很多朋友都中招了,纷纷咨询如何才能给自己带上圣诞帽,真到要低下自己高贵的头颅,
求职招聘市场长期存在着职位类别分布不均衡、新兴职类不断涌现的现象,这一定程度上会造成某些职类下的训练数据不够充分,从而难以获得较好的人岗匹配模型,影响推荐匹配效果。本文提出了一种结合多领域知识和层次化迁移学...