上周有粉丝私信老shi想要找推荐系统相关的论文,刚好这两天老shi无意中在b站上观看了国内某知名大学教授关于目前博士生就业问题相关论文解说的视频,感觉很有意思,就萌生了给大家翻译一篇经典的推荐系统论文的想法。本期...
https://www.cnblogs.com/armysheng/p/3422923.html
聚类算法是典型的无监督学习,其训练的样本中值包含样本的特征,不包含样本的标签信息。在聚类算法中。利用样本的特征,将具有相似属性的样本划分到统一类别中,它有点像全自动分类。...
对于监督学习而言,回归和分类是两类基本应用场景;对于非监督学习而言,则是聚类和降维。K-means属于聚类算法的一种,通过迭代将样本分为K个互不重叠的子集。...
Balanced Iterative Reducing and Clustering Using Hierarchies
聚类是一种经典的无监督学习(unsupervised learning)方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的类标记信息。...
若 λ 较大时,意味着模型复杂度较低,这时候容易发生欠拟合,对应偏差增大,方差减小。做个简单总结:
样本的特征数也称为维数(dimensionality),当维数非常大时,也就是通常所说的“维数灾难”(curse of dimensionality),具体表现在:在高维情形下,数据样本变得十分稀疏,因为此时要满足训练样本为“密采样”的总体样本数目是一个...
层次聚类算法(Hierarchical Clustering)将数据集划分为一层一层的clusters,后面一层生成的clusters基于前面一层的结果。层次聚类算法一般分为两类:
单细胞RNA测序能够使我们在单细胞层面通过细胞类型鉴定的算法认识细胞的异质性。然而,单细胞测序数据中含有的噪声,会对细胞聚类、差异分析以及可视化造成严重的影响。作者提出运用基于特征的表达密度谱的算法ENCORE,进...