【1】 Graph Kernel Attention Transformers标题:图核注意力转换器
【1】 A New Robust Multivariate Mode Estimator for Eye-tracking Calibration标题:一种新的用于眼动定标的鲁棒多变量模式估计器
最近在研究一些机器学习方面的论文,翻到了一篇较早的机器学习综述(2017年),虽然不是最新的研究现状,但考虑到经典机器学习算法其实发展并不像深度学习那么迅猛,所以其论述还是很有参考性。本文就其中关于机器学习算法分类的...
避免网络空间测绘数据使用中“刻舟求剑”,通过对IP地址对应资产动态变化研究,还原真实网络空间全貌。
威胁是网络安全领域关注的重点,因此针对多样的网络威胁,安全研究人员研究出了多种威胁检测引擎。在业务场景多样化以及海量数据的背景下,各种威胁检测引擎会产生大量的安全告警,例如在物联网威胁狩猎过程中会检测到大量告...
摘要:精神疾病在神经生物学和临床表征上存在异质性,基于数据驱动的疾病亚型识别有助于精神疾病的诊断和治疗,本文报告了创伤后应激障碍(PTSD)和重度抑郁障碍(MDD)两种临床相关亚型的识别,这两种疾病亚型主要通过在额顶叶...
随着人工智能的火热,机器学习和深度学习技术再一次进入了大众的视野。python的scikit-learn模块专注于机器学习领域,提供了数据集构建,数据预处理,模型算法,效果评估等各个环节的接口,是入门机器学习的最佳模块。...
“物以类聚,人以群分” 分群步骤即将基因表达(降维结果)相似的细胞归为同一个群体,往往对应一种特定的细胞类型或者细胞轨迹状态。从这一步开始,就可以开始叙述我们的生物学故事了~...
【1】 Fea2Fea: Exploring Structural Feature Correlations via Graph Neural Networks标题:Fea2Fea:基于图神经网络的结构特征相关性研究
大量数据中具有"相似"特征的数据点或样本划分为一个类别。聚类分析提供了样本集在非监督模式下的类别划分。聚类的基本思想是"物以类聚、人以群分",将大量数据集中相似的数据样本区分出来,并发现不同类的特征。...