,这时衍生的线性模型(式3.14)如下所示,实际上就是相当于将指数曲线投影在一条直线上,如下图所示:
“损失函数”是机器学习优化中至关重要的一部分。L1、L2损失函数相信大多数人都早已不陌生。那你了解Huber损失、Log-Cosh损失、以及常用于计算预测区间的分位数损失么?这些可都是机器学习大牛最常用的回归损失函数哦!...
本文讨论了线性回归的基础知识及其在Python编程语言中的实现。线性回归是一种统计方法,用于建模具有给定自变量集的因变量之间的关系。注意:在本文中,为简单起见,我们将因变量作为响应和自变量引用作为特征。为了提供线性...
文中的所有数据集链接:https://pan.baidu.com/s/1TV4RQseo6bVd9xKJdmsNFw
本内容涉及模型核心数学公式,把本人面试中常被问到问题以及模型知识点的总结,起到提纲挈领作用,在准备的过程中抓住每个模型的重点。
线性回归用于根据连续变量估算实际值(房屋成本,看涨期权,总销售额等)。在这里,我们通过拟合最佳线来建立独立变量和因变量之间的关系。该最佳拟合线称为回归线,并由线性方程Y = a * X + b表示。...
谷歌的自动驾驶汽车和机器人得到了很多新闻,但该公司真正的未来是机器学习,这种技术使计算机变得更聪明,更个性化。 - Eric Schmidt(谷歌主席)
可以从多个角度来理解最小二乘方法,譬如从几何方面考虑,利用正交性原理导出。
随机森林是在决策树(回归树)的基础上放入许多棵树,并行的,独立的构造出每一棵树,构成一个森林,这些树之间本身没有关系,通过最后将森林中所有的结果选举出最佳的结果达到优化提升的目的。...