上一篇文章中介绍了一元线性回归(R语言数据分析与挖掘(第四章):回归分析(1)——一元回归分析),然而,在实际操作中,多元性回归会更多见,因为一个响应变量会对应多个解释变量,一种现象常常是与多个因素相联系的,由多个自变量的...
本文介绍线性回归模型,从梯度下降和最小二乘的角度来求解线性回归问题,以概率的方式解释了线性回归为什么采用平方损失,然后介绍了线性回归中常用的两种范数来解决过拟合和矩阵不可逆的情况,分别对应岭回归和Lasso回归,最...
因子策略的开端,要从Fama-French 在资本资产定价模型上提出三因子模型说起,其在原有的市场因子Beta上,加上市值因子SMB和账面市值比因子HML,指出Beta不能完全解释不同股票回报率的差异,所以还应考虑上市公司的市值、账面市...
机器学习现在是一个热门话题,每个人都在尝试获取有关该主题的任何信息。有了关于机器学习的大量信息,人们可能会不知所措。在这篇文章中,我列出了你需要了解的一些机器学习中最重要的主题,以及一些可以帮助你进一步阅读你...
某天,我的一个朋友告诉我说,实现经济自由的关键是股票投资。虽然这是市场繁荣时期的真理,但如今业余交易股票仍然是一个有吸引力的选择。由于在线交易平台的便利性,涌现了许多自主价值投资者或家庭主妇交易员。甚至还有一...
回归分析只涉及到两个变量的,称一元回归分析。一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。回归分析就是要找出一个数学模型Y=f(X),使得从...
如今,推荐算法已经深入到我们生活的各个方面,比如说淘宝根据我们之前的浏览记录给我们推荐想要购买的商品;抖音不停地给我们推荐各种我们感兴趣的视频(虽然我个人不太喜欢抖音,觉得抖音会让我们丧失独立思考的能力,但是它的...
降维(Dimensionality Reduction)可以保持数据在原有特征的基础上对数据进行压缩,从 3D 降到 2D,使得数据的分布情况不发生改变,如下图:
还记得在线性回归中我们有哪两种方法去求代价函数的最小值吗?当然是梯度下降和正规方程了。让我们来复习一下线性回归中梯度下降算法,如下:
在线性回归问题中,像下面这个数据集,通过房屋面积去预测房价,我们用一次函数去拟合数据: