本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍使用sklearn实现多元线性回归和kNN回归。
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍在线性回归中使用梯度下降法。
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍衡量线性回归算法最好的指标R squared。
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍另一个机器学习领域的重要算法,线性回归算法。
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍实现简单的线性回归。
本系列是《玩转机器学习教程》一个整理的视频笔记。前一小节实现了简单线性回归,但是性能比较低。本小节主要介绍使用向量化的方式提升性能。
预测建模主要关注的是在牺牲可解释性的情况下,尽可能最小化模型误差或做出最准确的预测。我们将借鉴、重用来自许多其它领域的算法(包括统计学)来实现这些目标。...
本文介绍了广义线性模型,其中线性回归、logistic回归,softmax回归同属于广义线性模型。从指数分布家族推导出高斯分布、伯努利分布对应的指数分布家族形式,以最大化期望为目标推导出线性回归、logistic回归,softmax回归的...
前面我们讲了一元线性回归,没看过的可以先去看看:一元线性回归分析。这一篇我们来讲讲多元线性回归。一元线性回归就是自变量只有一个x,而多元线性回归就是自变量中有多个x。...
本文介绍线性回归模型,从梯度下降和最小二乘的角度来求解线性回归问题,以概率的方式解释了线性回归为什么采用平方损失,然后介绍了线性回归中常用的两种范数来解决过拟合和矩阵不可逆的情况,分别对应岭回归和Lasso回归,最...