今天给大家介绍的是湖南大学信息科学与工程学院全哲教授课题组在IJCAI 2020会议上发表的一篇关于知识图神经网络预测药物与药物相互作用的文章。在本文中,作者提出了一个称为知识图神经网络(KGNN)的端到端框架,以预测药物...
今天为大家带来斯坦福大学Jure Leskovec教授课题组发表在NeuIPS上的一篇论文。本文引入了一个框架GQE,以便在不完整的知识图谱上有效地对合取逻辑查询进行预测。在本文的方法中,作者在低维空间中对图节点进行嵌入,并在这...
BenevolentAI借助生物医学知识图谱确定了一种可能的药物“ Baricitinib”,可以抑制COVID-19感染并减少炎症损伤,目前已用于感染患者的临床试验。
自2019年12月起,新型冠状病毒迅速在全球扩散,急需快速地发现有效药物。药物重定位是一种将现有药物用于治疗新的适应症的药物发现方式,相对于传统的新药研发,它可以有效缩短药物研发周期,降低成本,规避风险。因此药物重定位...
今天给大家介绍瑞士知名药企阿斯利康和伯尔尼大学的 Esben Jannik Bjerrum团队在Nature Machine Intelligence上的一篇论文。该研究提出基于分子SMILES表示的条件循环神经网络,输入目标性质,模型可直接生成具有对应性质...
今天给大家介绍2019年6月发表在ACL上的论文“Attention Guided Graph Convolutional Networks for Relation Extraction”,该工作由新加坡科技设计大学StatNLP研究小组完成。该研究提出了一种以全依赖树作为输入的注意...
今天为大家分享的文章是ACL 2020录用的一篇关于关系抽取的文章,是吉林大学人工智能学院常毅教授团队的研究成果。针对目前既存模型处理重叠关系三元组(多个关系三元组共享同一个实体)效果不好的问题,提出了一种新的级联二...
今天给大家介绍收录在NIPS2019的文章“Multi-relational Poincaré Graph Embeddings”,该文章由爱丁堡大学信息学院和剑桥三星AI中心合作完成。这篇文章提出了一种多关系庞加莱模型(MuRp),该模型将多关系图数据嵌入到双...
今天为大家介绍的是马萨诸塞大学阿默斯特分校Trapit Bansal等学者和谷歌研究院合作在AAAI2020上发表的一篇关于实体链接和关系抽取的文章。虽然关系提取通常可以用现成的弱的或远距离的监督来训练,但实体链接器通常需...
链接: https://www.ijcai.org/proceedings/2018/0611.pdf