本文解读的是 CVPR 2020 论文《Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation》,作者来自百度。针对长视频上不同动作的时空巨大差异性,这篇论文提出了基于自监督的局部和全局混合时间域...
关注数据派THU(DatapiTHU)后台回复“20200618”获取《统计学习方法》相关资料
SGAN是在半监督学习的背景下提出的,与监督学习(其中每个样本都需要一个标签)和非监督学习(其中不提供标签)不同,半监督学习具有一小部分示例的标签。与FCGAN相比,SGAN的鉴别器是multi-headed的,即具有softmax和Sigmoid,以对真...
不为别的,实在是因为它展现出来的音/视频及图像复原效果,太令人惊叹了(效果展示中,Ground Truth为原始视频、音频或图像数据)。
在医疗、金融、法律等领域,高质量的标注数据十分稀缺、昂贵,我们通常面临少样本低资源问题。本文从「文本增强」和「半监督学习」这两个角度出发,谈一谈如何解决少样本困境。...
近几个月来自监督表征学习领域获得了显著突破,特别是随着 Rotation Prediction、DeepCluster、MoCo、SimCLR 等简单有效的方法的诞生,自监督表征学习大有超越有监督表征学习的趋势。...
对于深度强化学习,算力的需求更是强烈,看上图,排在前面的AlphaGoZero,AlphaZero都是深度强化学习的代表,这还是18年的图,还没加上Alphastar和OpenAI Five。想想OpenAI和微软打造的世界排名第五的超算最主要就是用在深度强化...
从家用机器人吸尘器到自动车辆,在物理空间中能够自主探索和导航是任何自主移动智能体的基本要求。传统的基于SLAM的探索和导航方法主要关注点在利用场景几何结构,但未能对动态对象(其他agents)或语义约束(如湿地板或门...
在语义SLAM中,目标检测数据关联和位姿估计是最基本的问题,但由于缺乏可靠、准确的算法,这些问题一直没有得到解决。本文中,我们提出一个集成的数据关联策略,来整合参数和非参数统计测试。利用不同统计数据的性质,我们的方法...