刚刚,斯坦福大学教授、人工智能实验室(SAIL)负责人、HAI 副主任 Christopher Manning 用一页纸的篇幅定义了 AI 领域的核心术语。他表示希望这些定义能够帮助非专业人员理解 AI。...
强化学习指的是专注于学习如何与环境交互的算法的机器学习。这种算法的一个例子叫做Q-learning。尽管它更接近于蛮力方法,Q-learning可能是最流行的强化学习方法。在我们开始学习Q-learning之前,让我们先讨论一下为什么...
深度学习有一个大问题: 它需要吞噬大量的数据,然后才能很好地泛化而变得实用。这实际上是深度学习的局限性之一,限制了它在数据不丰富或难以获得的许多领域的应用。...
在二分类的监督学习中,支持向量机、逻辑斯谛回归与最大熵模型、提升方法各自使用合页损失函数、逻辑斯谛损失函数、指数损失函数,分别写为:
在监督学习中,给定一组数据,我们知道正确的输出结果应该是什么样子,并且知道在输入和输出之间有着一个特定的关系。通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优...
url : https://towardsdatascience.com/self-supervised-tracking-via-video-colorization-7b2b066359d5
AI科技评论今天给大家介绍一下一篇被NeurIPS 2020接收的工作:《Rethinking the Value of Labels for Improving Class-Imbalanced Learning》。
预训练模型(Pre-trained Models,PTMs)的出现将NLP带入了一个全新时代。2020年3月18日,邱锡鹏老师发表了关于NLP预训练模型的综述《Pre-trained Models for Natural Language Processing: A Survey》,这是一篇全面的综述...
自我监督学习的研究正在发展,以开发完全不需要标签的结构(在训练数据本身中巧妙地找到标签),但其用例却受到限制。
近年来,自监督学习逐渐成为了备受人们关注的应对标注缺乏问题的热门解决方案,科研人员在基于对比学习的自监督方法方面进行了大量研究。本文是 PyTorch Lightning 创始人 William Falcon 的对比学习综述,对自监督学习、...