如果你是数据科学家或软件开发人员,那么应该已经知道一些 Python 和 SQL 的基本知识,这对数据科学家的面试已经足够了,因为大多数的公司基本上是这样的——但是,在你的简历中加入 Spark 是一个很好的加分项。...
来自Amazon,google,Meta, Microsoft等的面试问题,问题很多所以对问题进行了分类整理,本文包含基础知识和数据分析相关问题
来自Amazon,谷歌,Meta, Microsoft等的面试问题,本文接着昨天的文章整理了机器学习和深度学习的问题
在本篇文章中,我们将讨论机器学习和深度学习的不同领域中的一个热门话题:零样本和少样本学习(Zero and Few Shot learning),它们在自然语言处理到计算机视觉中都有不同的应用场景。...
深度图像分类模型通常以监督方式在大型带注释数据集上进行训练。随着更多带注释的数据加入到训练中,模型的性能会提高,但用于监督学习的大规模数据集的标注成本时非常高的,需要专家注释者花费大量时间。为了解决这个问题...
无监督学习(Unsupervised Learning)是和监督学习相对的另一种主流机器学习的方法,无监督学习是没有任何的数据标注只有数据本身。
前几天的文章中我们提到MAE在时间序列的应用,本篇文章介绍的论文已经将MAE的方法应用到图中,这是来自[KDD2022]的论文GraphMAE: Self-supervised Masked Graph Autoencoders...
MAE发布以来,各种使用掩码技术的自监督掩码模型在其基础之上有了更进一步的研究。在本文中我们将探索一篇和MAE同期的工作:SimMIM: A Simple Framework for Masked Image Modeling,研究团队是微软亚研院,并在PyTorch中编...
最近自我监督学习被重视起来。昨天我通过LinkedIn发现了这项工作,我觉得它很有趣。kaiming大神的MAE为ViT和自监督的预训练创造了一个新的方向,本篇文章将介绍Masked Siamese Networks (MSN),这是另一种用于学习图像表示...
机器学习算法应该理解数据从中提取有用的特征才能够解决复杂的任务。通常训练泛化模型需要大量带注释的数据。这个是非常费时费力的,并且一般情况下都很难进行。...