此部分为零基础入门金融风控的 Task3 特征工程部分,带你来了解各种特征工程以及分析方法,欢迎大家后续多多交流。
此部分为零基础入门金融风控的 Task2 数据分析部分,带你来了解数据,熟悉数据,为后续的特征工程做准备,欢迎大家后续多多交流。
由于金融风控场景的特殊性,很多算法同学在刚进入这个领域容易“水土不服”,为了使机器学习项目(也包括图算法相关的应用)落地更加顺利,本文介绍下实践过程的一些经验和踩过的坑。...
一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布;
该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键、基本的步骤,能够对机器学习基本流程有一个最清晰的认识;...
|导语 特征之于机器学习至关重要,大部分机器学习任务中特征复杂度决定了算法效果的上限。本文主要分享特征工程的通用方法论和腾讯视频小视频场景的特征实践工作。主要内容包括小视频排序特征、特征工程的方法论、特征...
不论是自己爬虫获取的还是从公开数据源上获取的数据集,都不能保证数据集是完全准确的,难免会有一些缺失值。而以这样数据集为基础进行建模或者数据分析时,缺失值会对结果产生一定的影响,所以提前处理缺失值是十分必要的。...
颅内出血(颅骨内出血)是医疗领域严重的健康问题,需要快速且经常进行密集的医学治疗。在美国,颅内出血约占中风的10%,其中中风是导致死亡的第五大原因。在医学界,识别任何出血的位置和类型是治疗患者的关键步骤。现在的情况下...
维基百科对于特征工程的定义是:利用相关领域知识,通过数据挖掘技术从原始数据中提取特征的过程。这些特征可以用来提高机器学习算法的性能。
个人以为,机器学习是朝着更高的易用性、更低的技术门槛、更敏捷的开发成本的方向去发展,且AutoML或者AutoDL的发展无疑是最好的证明。因此花费一些时间学习了解了AutoML领域的一些知识,并对AutoML中的技术方案进行归纳整...