序列转换方式由基于复杂递归神经网络(RNN)和卷积神经网络(CNN)的编码器和解码器模型主导。表现最佳的模型也只是通过一个注意力机制来连接了编码器和解码器。我们提出一个新的简单网络架构——Transformer。相比表现...
深度学习算法(第24期)----自然语言处理(NLP)中的Word Embedding前几期我们一起学习了RNN的很多相关知识,今天我们一起用这些知识,学习下机器翻译中的编码解码网络....
近年来,神经机器翻译(Neural Machine Translation,NMT)已经事实上成为了主流的机器翻译方法,其在大多数主流语言对上的翻译效果大大超过了传统的统计机器翻译模型,并已经部署到了如 Google Translate 等商用场景中。...
众所周知,参加学术会议是进入学术圈、走进学术前沿的重要方式。在学术会议上,不仅可以集中听取最新的成果报告,还有讲习班、工作坊、社交活动等形式,了解那些不会写到论文中的八卦与动态,结识学术大佬和朋友,走向学术人生巅...
作为自然语言处理中一项非常重要的应用,现代意义上的机器翻译概念从上世纪40年代提出至今,经过了几代革新,现已初步实现了多场景的落地和应用。而近几年随着机器翻译质量的提高,机器翻译将代替人工翻译的声势逐渐浩大起来...
本次分享内容为爱奇艺在做视频搜索时,遇到的真实案例和具体问题;以及面对这些问题的时候,我们的解决方案。这次分享的ppt针对一线的开发人员,希望可以给一线的开发人员提供一些启示。...
语言与智能技术发展到了什么程度?未来的技术发展趋势是什么?如何与其他人工智能技术协同发展?都是值得思考与探讨的问题。
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
在上个文章中,我们已经简单介绍了 NLP 机器翻译,这次我们将用实战的方式讲解基于 RNN 的翻译模型。
这个模型在跨语言分类任务(15个语言的句子蕴含任务)上比其他模型取得了更好的效果,并且显著提升了有预训练的机器翻译效果。