深度学习(deep learning)是机器学习的分支,已经在工业生产、科学研究等领域有广泛应用。图 1-1-1 显示了深度学习、机器学习和人工智能之间的相对关系。...
聚类是无监督学习的方法,它用于处理没有标签的数据,功能强大,在参考资料 [1] 中已经介绍了几种常用的算法和实现方式。其中 K-均值(K-Means)算法是一种常用的聚类方法,简单且强大。...
在 SVM 中引入核函数,用它处理非线性数据,即:将数据映射到高维空间中,使数据在其中变为线性的,然后应用一个简单的线性 SVM。听起来很复杂,在某种程度上确实如此。然而,尽管理解核函数的工作原理可能很困难,但它所要实现的目...
人工智能(AI)项目的“落地”问题,现在谈论的比较多,我也来凑个热闹,不过,我不是从宏观角度来讲,而是从具体实施过程讲讲个人体会。
今早,有读者询问《机器学习数学基础》77页的旋转公式问题,下面将详细推导过程显示出来:
深度学习是机器学习的一个分支,目前常用的深度学习框架有 TensorFlow、PyTorch和飞桨等(飞桨,即 PaddlePaddle,全中文的官方文档,让学习者不为语言而担忧)。本小节中将以 PyTorch 演示一个经典的案例,让初学 Python 的读者对...
数据集 cruise.csv 包含了船的吨位、大小、乘客密度、船员数量等特征,业务需要建立一个船员数量与其他相关特征的回归模型,从而能估计船员数量。
科学计算是科学、工程等项目中必不可少的,MATLAB 曾风光一时,但它是收费的,并且有“被禁”的风险——坚决反对用盗版软件,“被禁”不是盗版的理由。其实,Python ——开源、免费——是做科学计算的选择之一,它不仅能做 MATLA...
在本文中,贝叶斯模型提供了变量选择技术,确保变量选择的可靠性。对社会经济因素如何影响收入和工资的研究为应用这些技术提供了充分的机会,同时也为从性别歧视到高等教育的好处等主题提供了洞察力...
您想构建一个没有太多训练数据的机器学习模型吗?众所周知,机器学习需要大量数据,而收集和注释数据需要时间且成本高昂。