主成分分析是最常用的一种降维方法。我们首先考虑一个问题:对于正交矩阵空间中的样本点,如何用一个超平面对所有样本进行恰当的表达。容易想到,如果这样的超平面存在,那么他大概应该具有下面的性质。...
做模型的同学基本都会使用tensorflow,不知道大家是否会像我一样对tensorflow的模型存储感到疑惑:各种模型保存的方法、保存出的模型文件名称和结构还不一样、加载模型的时候有的需要重新定义一遍计算图而有的不需要、有...
这里lambda表示特征向量v所对应的特征值。并且一个矩阵的一组特征向量是一组正交向量。特征值分解是将一个矩阵分解为下面的形式:
导语:对于做算法的而言,了解一下整个流程是必要的。一来加深对整个环节的理解,二来:方便在定位badcase的知道可能是那块的问题所在。
梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路。
设f(x)是二次可微实函数,又设$x^{(k)}$是f(x)一个极小点的估计,我们把f(x)在$x^{(k)}$处展开成Taylor级数, 并取二阶近似。
LDA是一种概率主题模型:隐式狄利克雷分布(Latent Dirichlet Allocation,简称LDA)。LDA是2003年提出的一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出。通过分析一些文档,我们可以抽取出它们的主题(分布),根...
线性支持向量机是一个用于大规模分类任务的标准方法。。它的损失函数是合页(hinge)损失,如下所示
回归是一种很容易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系。最常见问题如医生治病时的望、闻、问、切,之后判定病人是否生病或生了什么病,其中的望、闻、问、切就是获取的自变量x,即特征数据,判断是否生病就...
数据决定了任务的上限,模型方法决定达到上限的能力。在这里想借助信息熵的一些概念来对数据的重要性做一些分析,将数据的分布差异度量出来,并据此得到特征对于分类的重要性度量。 对于特征的重要性的分析不适合放到特征...