文中涉及变分推断,可参考这篇阅读:https://zhuanlan.zhihu.com/p/70644599
paper:https://arxiv.fenshishang.com/pdf/2105.10648.pdf
EE是推荐系统中不变的话题,我们需要通过探索用户的兴趣来避免进入闭环,增加推荐系统的多样性和个性化,因此需要在探索和利用之间做权衡。
本文主要是将序列中的时间因素作为特征考虑到模型中,从而发掘时间变化模式。现有研究将时间信息视为单一类型的特征,并侧重于如何将其与用户对商品的偏好相关联。然而,它们不足以充分学习时间信息,因为用户偏好的时间模式...
本文是针对新用户方面的冷启动文章,作者提出双塔结构的MAIL,一个塔用于冷启动,另一个塔关注排序问题。
MAB问题又称多臂老虎机问题,一个老虎机上有多个老虎臂,每次摇动不同的臂会得到不同的收益,那么如何才能让多次尝试后整体收益最大?这就是多臂老虎机问题。MAB问题可以采用Bandit算法来解决,Bandit算法的思想是希望在多次摇...
推荐系统中通常采用隐式反馈,如点击。将观察到的数据(如曝光点击)作为正样本,未观察到的作为负样本,但是隐式反馈通常是有噪声的,比如存在误点击的情况。现有的处理反馈中噪声的方法存在以下不足:...
Bandit方法在很多领域都有应用,比如强化学习,推荐系统。在推荐系统中可以采用Bandit方法进行冷启动,探索与利用的平衡,具体的方法介绍在之前的文章中已经介绍了,这里不在赘述,这次和大家分享相关方法的具体实现。...
这里简单复现了一下wide and deep这个基础方法,和大家进行分享,wide and deep是推荐系统中的基础模型,主要由wide和deep两部分构成,这也是它名字的由来。deep部分是特征与特征之间的深度复杂交互,可以提升模型泛化能力,是黑...
DeepFM方法是华为在2017年提出的,是推荐系统中的经典方法,和wide and deep类似,DeepFM也是同时考虑记忆和泛化,在泛化部分采用DNNs结合dropout,batch norm提升模型泛化能力;而记忆部分,采用的是FM,将特征之间进行两两交互。最...