在毕设系列推文的第二章中我们详细介绍了TensorFlow的一些基础知识(TensorFlow 2.0 概述);在第三章(毕业设计之「神经网络与深度学习概述」 (一)、毕业设计之「神经网络与深度学习概述」(二))中对神经网络与深度学习做了简单的...
卷积神经网络(CNN)在计算机视觉任务中有着广泛的应用,然而它的运算量非常巨大,这使得我们很难将CNN直接运用到计算资源受限的移动设备上。为了减少CNN的计算代价,许多模型压缩和加速的方法被提出。...
线性回归:进行直线或曲线拟合,一般使用“最小二乘法”来求解。最小二乘法将最优问题转化为求函数极值问题。函数极值在数学上我们一般会采用求导数为0的方法。 但这种做法并不适合计算机,可能求解不出来,也可能计算量太大...
这时候,就需要「数据增强」来获取更多数据。而近几年,镜像反转成了最为常用的方法之一。
(貌似江湖上有两篇 ZFNet 的论文,也即:Visualizing and Understanding Convolutional Networks )最新的请见论文地址:https://arxiv.org/pdf/1311.2901.pdf
“如果我不是物理学家,我可能会成为音乐家。我经常在音乐中思考。我活在音乐的白日梦里。我从音乐的角度来看待我的生活。”——阿尔伯特·爱因斯坦...
事物、概念之间的关系是人类知识中非常重要的一个部分,但是他们通常隐藏在海量的非结构文本中。为了从文本中抽取这些关系事实,从早期的模式匹配到近年的神经网络,大量的研究在多年前就已经展开。...
https://proceedings.icml.cc/static/paper_files/icml/2020/1185-Paper.pdf
那是因为在图像分类时,面临着图像大,物体的形态、位置不同等问题,这就给普通的神经网络带来了难题。
断断续续写了一个多星期,期间找了很多同学讨论学习,感谢指导过点拨过我的同学们,为了精益求精本着不糊弄别人也不糊弄自己的原则在本文中探讨了很多细节。...