MASR是一个基于端到端的深度神经网络的中文普通话语音识别项目,本项目是基于masr 进行开发的。
目前,作为深度学习的代表算法之一,卷积神经网络(Convolutional Neural Networks,CNN)在计算机视觉、分类等领域上,都取得了当前最好的效果。
本篇文章在上篇TensorFlow-手写数字识别(二)的基础上,将全连接网络改为LeNet-5卷积神经网络,实现手写数字识别。
RCNN全称为Regions with CNN Features,是将深度学习应用到物体检测领域的经典之作,并凭借卷积网络出色的特征提取能力,大幅度提升了物体检测的效果。而随后基于RCNN的Fast RCNN及Faster RCNN将物体检测问题进一步优化,在...
我们都知道,神经网络可以在执行某些任务时复制人脑的功能。神经网络在计算机视觉和自然语言生成方面的应用已经非常引人注目。
这几天又看了AMIR HERTZ和RANA HANOCKA的2019年的文章,关于如何在三维网格图形上应用卷积神经网络CNN。文章的特点就是能通过池化层下采样模型来提高语义分割的正确率,效果如下面的论文封面图,为了分辨出花瓶的颈或把手,...
前面的教程中我们已经学习了如何定义神经网络,计算损失并更新网络的权重。接下来,我们完整的训练一个神经网络模型,并测试其性能。
全连接层,输出的是一个一维向量,参数跟卷积层一样。一般将全连接置于卷积神经网络的后几层。权重值的初始化采用xavier,偏置初始化为0.