朴素贝叶斯分类器是机器学习中最基础的分类算法了,之前一直忽视这个算法,感觉这种简单利用贝叶斯公式的方法的确很Naive。但是事实上这个算法在对于特征相互独立的分类问题来说还是非常好用的。其基本思想就是在给定在...
深度学习理论的突破和深度学习硬件加速能力的突破,使AI在模式识别、无人驾驶、智力游戏领域取得空前的成功。学术界和工业界全力以赴掀起人工智能的新一轮热潮。各大互联网巨头纷纷成立人工智能研究中心,唯恐在新一轮人...
本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测。
在机器学习中,我们把机器学习分为监督学习和非监督学习,监督学习就是在一组有标签(有目标)属性的数据集中,我们将数据教给机器学习,让他根据数据中的属性和目标,去看题目答案一样把答案记住。之后再给类似的题目去作一样。...
举一个简单易懂的例子:将电子邮件分类为“ 垃圾邮件 ”或“ 非垃圾邮件”(二分类的典型特征“非此即彼”,关于二分类,后文会涉及)。
机器学习的开发基本分为六个步骤, 1)获取数据, 2)数据处理, 3)特征工程, 4)机器学习的算法训练(设计模型), 5)模型评估, 6)应用。
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对...
这也是线性回归中最常用的损失函数,线性回归过程中尽量让该损失函数最小。那么模型之间的对比也可以用它来比较。 MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。...
在上一节中,我们介绍了GBDT的基本思路,但是没有解决损失函数拟合方法的问题。针对这个问题,大牛Freidman提出了用损失函数的负梯度来拟合本轮损失的近似值,进而拟合一个CART回归树。第t轮的第i个样本的损失函数的负梯度表...