无人驾驶 03

2022-07-06 14:42:41 浏览数 (1)

卡尔曼滤波 Kalman Filter

Kalman Filter 经常运用于无人驾驶系统中感知模块,用于目标状态估计。用人话说,就是物体追踪

简单来说,有个运动的小车,用来测量小车运动的传感器其实有测量噪声 (Measurement Noise),所以得到的结果是个高斯分布

如果我们用带误差的测量值来预测下一时刻的位置,由于加入了速度估计噪声,所以不确定性更大了

于是用传感器再做一次测量,新的测量依然带有误差(还是个高斯分布)

将得到的两个高斯分布加权取平均,得到新的高斯分布(绿)

这步操作中使用到的加权数值叫做卡尔曼增益,决定了我们对当前测量的信任程度。新得到的绿色高斯分布,拥有比前两次测量值更小的方差。说明卡尔曼滤波从两个不确定较高的分布,得到了一个相对确定的分布。并且新的高斯分布可以作为下次预测的初始值(卡尔曼滤波假设本次测量只和上次测量有关),所以卡尔曼滤波可以迭代。

(小车插图图源《Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation》)

行为克隆 Behavior Cloning

使用神经网络进行无人驾驶的理论基础来源于Imitation Learning (模仿学习)。行为克隆算是Imitation Learning的一种。思路倒是很简单,将人类驾驶作为基础数据全部收集下来,然后让神经网络去拟合数据。

这类端到端的解决方案基本上是一个路子,优点:简单且有效,缺点:受限于收集的数据。因为训练集总是有限的,如果出现了神经网络之前没见过的数据,那么效果就会很差。

一个比较经典的条件是天气,下雨天的路面跟晴天的路面不一样,有雾的天气下道路能见度也会对摄像头收集的数据有很大影响。

0 人点赞