近年来,强化学习(Reinforcement Learning, RL)在多个领域取得了巨大的进展。从早期简单的迷宫导航问题到今天 AlphaGo 击败围棋世界冠军,强化学习的潜力得到了充分展现。而随着深度学习的引入,深度强化学习(Deep Reinforcem...
强化学习的基本任务是通过智能体与环境的交互学习一个策略,使得智能体能够在不同的状态下做出最优的动作,以最大化累积奖励。这种学习过程涉及到智能体根据当前状态选择动作,环境根据智能体的动作转移状态,并提供即时奖励...
这个系列旨在关联各种“算法”的思路介绍各种成长“方法”,让算法思路不止可以用在程序上,也可以用在“人生成长”上!
在本篇博客中,我们将深入探讨 OpenAI Gym 高级教程,重点介绍深度强化学习库的高级用法。我们将使用 TensorFlow 和 Stable Baselines3 这两个流行的库来实现深度强化学习算法,以及 Gym 提供的环境。...
强化学习来自于心理学里的行为主义理论,是在环境给予的奖励或惩罚信号的反馈下,逐步形成能获得最大利益的行为策略。与监督学习相比,强化学习不需要事先准备样本集,而是通过不断尝试,发现不同动作产生的反馈,来指导策略的学...
今天为大家介绍的是来自 Hao Liu和 Liang Hong团队的一篇论文。基于深度学习的分子生成模型在新药设计领域引起了广泛关注。然而,大多数现有模型专注于基于配体或基于结构的策略之一,因此未能有效利用从配体和结合靶点...