残差网络是何凯明大神的神作,效果非常好,深度可以达到1000层。但是,其实现起来并没有那末难,在这里以tensorflow作为框架,实现基于mnist数据集上的残差网络,当然只是比较浅层的。...
1, 首先我们当然可以直接在tensorflow训练中直接保存为pb为格式,保存pb的好处就是使用场景是实现创建模型与使用模型的解耦,使得创建模型与使用模型的解耦,使得前向推导inference代码统一。另外的好处就是保存为pb的时候...
最近学校给了一个服务器账号用来训练神经网络使用,服务器本身配置是十路titan V,然后在上面装了tensorflow2.2,对应的python版本是3.6.2,装好之后用tf.test.is_gpu_available()查看是否能调用gpu,结果返回结果是false,具体...
最近需要将使用keras训练的模型移植到手机上使用, 因此需要转换到tensorflow的二进制模型。
目标是想把在服务器上用pytorch训练好的模型转换为可以在移动端运行的tflite模型。
背景:目前keras框架使用简单,很容易上手,深得广大算法工程师的喜爱,但是当部署到客户端时,可能会出现各种各样的bug,甚至不支持使用keras,本文来解决的是将keras的h5模型转换为客户端常用的tensorflow的pb模型并使用tensorfl...
save ├── saved_model.pb └── variables ├── variables.data-00000-of-00001 └── variables.index
以前tensorflow有bug 在winodws下无法转,但现在好像没有问题了,代码如下
之前希望在手机端使用深度模型做OCR,于是尝试在手机端部署tensorflow模型,用于图像分类。
caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB。