Spark Standalone集群是Master-Slaves架构的集群模式,和大部分的Master-Slaves结构集群一样,存在着Master单点故障(SPOF)的问题。
包含两个部分:应用管理者AppMaster和运行应用进程Process(如MapReduce程序MapTask和ReduceTask任务),如下图所示:
Spark运行在YARN上是有2个模式的, 1个叫 Client模式 一个叫Cluster模式
实际开发Spark 应用程序使用IDEA集成开发环境,Spark课程所有代码均使用Scala语言开发,利用函数式编程分析处理数据,更加清晰简洁。
1.MR:只提供了map和reduce的API,而且编写麻烦,运行效率低!---早就淘汰了!
有一定开发经验的读者应该都使用过多线程,利用多核 CPU 的并行能力来加快运算速率。在开发并行程序时,可以利用类似 Fork/Join 的框架将一个大的任务切分成细小的任务,每个小任务模块之间是相互独立的,可以并行执行,然后将...
在默认情况下,当Spark在集群的多个不同节点的多个任务上并行运行一个函数时,它会把函数中涉及到的每个变量,在每个任务上都生成一个副本。但是,有时候需要在多个任务之间共享变量,或者在任务(Task)和任务控制节点(Driver P...
Spark可以从外部存储系统读取数据,比如RDBMs表中或者HBase表中读写数据,这也是企业中常常使用,如:
Spark的核心是根据RDD来实现的,Spark Scheduler则为Spark核心实现的重要一环,其作用就是任务调度。Spark的任务调度就是如何组织任务去处理RDD中每个分区的数据,根据RDD的依赖关系构建DAG,基于DAG划分Stage,将每个Stage中...
Spark SQL允许开发人员直接处理RDD,同时可以查询在Hive上存储的外部数据。Spark SQL的一个重要特点就是能够统一处理关系表和RDD,使得开发人员可以轻松的使用SQL命令进行外部查询,同时进行更加复杂的数据分析。...