最新 最热

XGboost数据比赛实战之调参篇(完整流程)

这一篇博客的内容是在上一篇博客Scikit中的特征选择,XGboost进行回归预测,模型优化的实战的基础上进行调参优化的,所以在阅读本篇博客之前,请先移步看一下上一篇文章。...

2018-04-03
0

塔秘 | 极简Python带你探索分类与回归的奥秘

前言本文从分类和回归两个方面介绍了基本的监督学习方法,并用Scikit-Learn做了实例演示。为何使用人工智能和机器学习?地球的未来在于人工智能和机器学习。如果对这些技术一无所知,人们很快会发...

2018-04-03
0

结合Scikit-learn介绍几种常用的特征选择方法(上)

特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。特征选择主要有两个功能:减少特征数量、...

2018-04-02
0

机器学习之从极大似然估计到最大熵原理以及EM算法详解

极大似然估计是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。...

2018-04-01
0

通过从零开始实现一个感知机模型,我学到了这些

编者按:本文源自作者 Jean-Nicholas Hould 的个人博客,他是一位来自加拿大蒙特利尔的数据科学家,具有丰富的研发和实践经验。本文节选自作者个人的学习笔记,原文见文末链接,AI研习社编译。对许多刚入门机器学习的开发者而...

2018-03-29
0

Top 20-Python 机器学习开源项目

导语:KDnuggets 为您带来 Github 上最新的 Python 机器学习开源项目前 20 名。奇怪的是,去年一些非常活跃的项目渐渐停滞了,因此没能上榜,而 13 个新项目冲进了今年的 top...

2018-03-29
0

十大你不可忽视的机器学习项目

前言:那些流行的机器学习项目之所以受欢迎,一般是因为其提供了一种多数人需要的服务,或是因为它们是第一个(也许是最好的)针对特定用户提供服务的。那些最流行的项目包括Scikit-learn、TensorFlow、 Theano、MXNet 、Weka ...

2018-03-29
0

机器学习中的数学基础

导语:现在出现了很多易于使用的机器学习和深度学习的软件包,例如 scikit-learn, Weka, Tensorflow 等等。机器学习理论是统计学、概率学、计算机科学以及算法的交叉领域,是通过从...

2018-03-28
0

特征工程之Scikit-learn

目录1 特征工程是什么?2 数据预处理  2.1 无量纲化    2.1.1 标准化    2.1.2 区间缩放法    2.1.3 标准化与归一化的区别  2.2 对定量特征二值化  2.3 对定性特征哑编码  2.4 缺失值计算  2.5 ...

2018-03-28
0

“表”解机器学习

导语:在过去的几个月里,作者一直在专注于整理归纳AI的各类小要点。在被越来越多的朋友同事问及时,我决定将这些总结和心得的完整版分享给大家。为了增加内容的趣味性和可读性,我也在每个主题下面加了些注解,希望对你们有用...

2018-03-28
0