Classification Report: 用视图的方式呈现精确率,召回率和F1值
这篇文章为大家介绍了一个开源项目——sk-dist。在一台没有并行化的单机上进行超参数调优,需要 7.2 分钟,而在一百多个核心的 Spark 群集上用它进行超参数调优,只需要 3.4 秒,把训练 sk-learn 的速度提升了 100 倍。...
顾名思义,机器学习是计算机编程的科学,通过它可以从不同类型的数据中学习。Arthur Samuel给出的更一般的定义是 - “机器学习是一个研究领域,它使计算机无需明确编程即可学习。”它们通常用于解决各种类型的生活问题。...
本教程是本人尝试使用scikit-learn的一些经验,scikit-learn真的超级容易上手,简单实用。5分钟学会用调用基本的回归方法和集成方法应该是够了。
【导语】这篇文章为大家介绍了一个开源项目——sk-dist。在一台没有并行化的单机上进行超参数调优,需要 7.2 分钟,而在一百多个核心的 Spark 群集上用它进行超参数调优,只需要 3.4 秒,把训练 sk-learn 的速度提升了 100 ...
基于树的学习算法是十分流行且应用广泛的一类非参数化的有监督学习算法,这些算法既可用于分类又可用于回归。基于树的学习算法的基础是包含一系列决策规则(例如,“如果他们是男性……”)的决策树。这些决策规则看起来很像...
比如你可能会问班里的考试成绩是怎样的?这里其实指的是大部分同学的成绩如何。以下图为例,在正态分布中,大部分人的成绩会集中在中间的区域,少部分人处于两头的位置。正态分布的另一个好处就是,如果你知道了自己的成绩,和整...
Keras 是一个高级的 (high-level) 深度学习框架,作者是 François Chollet。Keras 可以以两种方法运行:
用于创建新特征,检测异常值,处理不平衡数据和估算缺失值的技术可以说,开发机器学习模型的两个最重要的步骤是特征工程和预处理。特征工程包括特征的创建,而预处理涉及清理数据。...
先前在天善智能那儿得到了一些翻译版的DataCamp,于是也抽空过一遍内容,把一些觉得常用的内容给记录下来,主要围绕着建模相关的资料内容,所以主要还是Pandas、Numpy、Scikit-learn为主了。...