上一篇文章中介绍了一元线性回归(R语言数据分析与挖掘(第四章):回归分析(1)——一元回归分析),然而,在实际操作中,多元性回归会更多见,因为一个响应变量会对应多个解释变量,一种现象常常是与多个因素相联系的,由多个自变量的...
知乎ID:https://www.zhihu.com/people/herain-14
建国70周年大庆即将到来,各行各业都在积极筹备迎接祖国的生日,在这个举国欢腾的时刻,我们决定以一种特殊方式来表达自己对祖国母亲的祝福:一副用R语言绘制的中国地图。...
RNA-seq是研究转录组应用最广泛,也最重要的技术之一。RNAseq其分析内容包括序列比对、转录本拼装、表达定量、差异分析、融合基因检测、可变剪接、RNA编辑和突变检测等,具体流程和常用工具如下图所示。通常的分析不一定...
在数据分析中,往往会遇到各种复杂的数据处理操作:分组、排序、过滤、转置、填充、移动、合并、分裂、去重、找重、填充等操作。这时候R语言就是一个很好的选择:R可以高效地、优雅地解决数据处理操作。(本章节为R语言入门...
在介绍了缺失值处理的方法之后,我们可以得到完整的数据集,但在进行数据分析之前,还需要对数据进行整理,下面我们将介绍数据整理的相关知识。...
经常有小伙伴跟我抱怨,没时间没精力去学代码,太复杂了。当然也有些小伙伴确实打起精神开始学,从网上搜了一大堆R语言资料,和生物信息学资料,甚至还买了本R语言实战的书,甚至还学起了python,准备大干一场。但是,有时候实在是心...
值此中秋佳节到来之际,“科研猫”祝大家节日快乐,还精心给大家备了一份送来圆圆的月饼。
到目前为止,R语言的数据操作和基础绘图部分已经讲解完毕,换句话说,大家应该已经能将数据导入R中,并运用各种函数处理数据使其成为可用的格式,然后将数据用各种基础图形展示。完成前面这些步骤之后,我们接下来要探索数据中变...
在上一次的推文中,我们已经介绍了很多应用广泛的图形。它们主要用于展示单类别型或连续型变量的分布情况。这一次,我们来讨论一下怎么利用图形展示双变量间关系(二元关系)和多变量间关系(多元关系)。展示变量关系的图形...