学习进入第二大部分,终于能够喘口气。接下来我们要做的是使用PyTorch来完成一个大项目,这个项目的目标是从医疗影像中检测癌症。这个题目听起来好像也不是那么难,像我们前面检测一张图片是鸟还是飞机,这个貌似也是个简单...
上一节,我们已经成功训练了我们的深度神经网络,甚至尝试了在GPU上训练。不过我们的网络仍然处于一种初级状态,只能说大概了解了炼丹炉的工作流程,炼丹的时候还有很多改进技巧可以提升炼丹的效率或者效果。...
上一小节对神经网络有了基本的了解,这一小节就看一下如何用代码来实现一个神经网络。我们所用的案例还是那个温度转换的案例,只不过需要我们把之前的线性模型替换成神经网络模型,并重新训练以找到适合神经网络的权重。依...
上一节,我们写了很多代码,但是不知道你有没有注意,那些代码看起来跟PyTorch关系并不是很大啊,貌似很多都是Python原生代码?
前面都在学一些PyTorch的基本操作,从这一节开始,真正进入到模型训练的环节了。原作者很贴心的一步步教我们实现训练步骤,并且还从一个最简单的例子出发,讲了优化方案。...
关于张量的底层存储逻辑这一部分看的我有点头大,但是了解底层实现确实有助于理解tensor中的各种运算到底是怎么一个回事,当然大部分时间我们可以不太会用到这些存储操作,但是熟悉这些底层实现,我觉得一方面可以帮我屏蔽一...
看起来,张量是一个物理学概念,不过在这里,我们不用想的那么复杂,简单来理解,张量就是一个多维数组,当然如果它的维度是0那就是一个数,如果维度是1那就是一个矢量,或者称作一维数组。在PyTorch中都是使用张量的概念和数据结构...
与列表不同的是,张量只能用来处理数值类型,不像Python列表,什么类型都可以往里面放,下面就是tensor中可以处理的数值类型
最近在家待着没有什么事情,买了本PyTorch开始学习,自己动手写写代码。就是下面这本,2022年2月才第一版,很新,确实是本很不错的书,不过这里面的中文翻译真的是有点让人头大。...
本章将介绍用于解决实际问题的深度学习架构的不同模块。前一章使用PyTorch的低级操作构建了如网络架构、损失函数和优化器这些模块。本章将介绍用于解决真实问题的神经网络的一些重要组件,以及PyTorch如何通过提供大量...