深度残差网络(Deep Residual Networks,简称ResNet)自从2015年首次提出以来,就在深度学习领域产生了深远影响。通过一种创新的“残差学习”机制,ResNet成功地训练了比以往模型更深的神经网络,从而显著提高了多个任务的性能。...
Pytorch很灵活,支持各种OP和Python的动态语法。但是转换到onnx的时候,有些OP(目前)并不支持,比如torch.cross。这里以一个最小化的例子来演示这个过程,以及对应的解决办法。...
最近在学习Libtorch——即Pytorch的C++版本,需要使用 Pytorch 导出的 tensor 以便对模型进行 debug。下面是转换代码,总体原理是将 tensor 转换为二进制数据,再在 C++ 里面读入。...
今天聊一下比较重要的torch.fx,也趁着这次机会把之前的torch.fx笔记整理下,笔记大概拆成三份,分别对应三篇:
我们对Pytorch的debug一般都是在python端进行,这对于一般搭建模型的任务来说足够了。但如果我们需要对Pytorch进行一些修改或者研究一下机器或深度学习系统是如何搭建的,想要深入探索就必须涉及到C++的源码层面。...
文中涉及到大量的Pytorch的C++源码,版本为1.4.0a,适合有一定Pytorch源码基础的童鞋观看,同时也涉及到一些python中的C/C++拓展的一些基础知识,其中每一段代码的第一行表明了该代码的文件位置。需要注意有些代码是自动生成...
最近在浅尝Pytorch的源码,利用业余时间去品读品读,看着看着,第一次对Pytorch有了重新的认识。 原来现在Pytorch的版图是如此之大,Pytorch已经不是一年前的Pytorch了。...
在数据越来越多的时代,随着模型规模参数的增多,以及数据量的不断提升,使用多GPU去训练是不可避免的事情。Pytorch在0.4.0及以后的版本中已经提供了多GPU训练的方式,本文简单讲解下使用Pytorch多GPU训练的方式以及一些注意...
填一个之前的坑啊,本篇的姊妹篇——利用Pytorch的C++前端(libtorch)读取预训练权重并进行预测 这篇文章中已经说明了如何在Ubuntu系统中使用libtorch做预测,当初也有朋友问我如何在Windows之下尝试使用libtorch,当时因为...