> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas...
这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。这个项目从基础到进阶,可以检验你有多么了解 pandas。
最近在研究 matplotlib 的最佳学习方式,遇到一个常见又好像无法避免的问题。
根据不同的条件进行不同的计算或操作,是很常见的需求。Python 有 if 语句可以实现。但是一旦分支很多,多个 if 就是使你眼花缭乱。
这依然是我在准备可视化专栏的过程笔记,主题仍然是模仿各种非常规图表,大部分使用 matplotlib 包完成。
有小伙伴说,使用 matplotlib 做出来的图表比不上其他的基于 js 包装的库(pyechart、bokeh、plotly等)漂亮,他们可以还可以交互。同时,基于 matplotlib 包装的 seaborn 似乎也比较省代码。...
但是,如果只是制作标准的图表,我们有许多其他的选择。最常见的就是使用 seaborn ,他是基于 matplotlib 的包装。
Python 可视化库非常多,其中 matplotlib 是优缺点明显的一个库,优点是他非常灵活,缺点就是学习起来相对复杂。
GitHub地址:https://github.com/8080labs/pyforest
分别是Bashplotlib、tqdm、PrettyTable、Colorama。