数据科学中一种常见的可视化类型是地理数据。Matplotlib 用于此类可视化的主要工具是 Basemap 工具包,它是位于mpl_toolkits命名空间下的几个 Matplotlib 工具包之一。不可否认,Basemap 使用时有点笨拙,甚至简单的可视化...
Matplotlib 最初设计时只考虑了二维绘图。在 1.0 版本发布时,一些三维绘图工具构建在 Matplotlib 的二维显示之上,结果是一组方便(但是有限)的三维数据可视化工具。通过导入mplot3d工具包来启用三维绘图,它包含在主要的 Ma...
Matplotlib 的默认绘图设置通常是其用户所抱怨的主题。虽然在 2016 年末的 Matplotlib 2.0 版本中有很多改进的内容,但自定义默认设置的能力,有助于使软件包符合你自己的审美偏好。...
Matplotlib 的默认刻度定位器和格式化程序,在许多常见情况下通常都足够了,但对于每个绘图都不是最佳选择。本节将提供几个刻度位置和格式的示例,它们调整你感兴趣的特定绘图类型。...
创建良好的可视化涉及引导读者并使图形讲述故事。在某些情况下,可以以完全可视的方式讲述这个故事,而不需要添加文本,但在其他情况下,需要小的文本提示和标签。也许你将使用的最基本的注释类型是轴标签和标题,但选项超出了...
有时,并排比较不同的数据视图会很有帮助。为此,Matplotlib 具有子图的概念:可以在单个图形中一起存在的较小轴域分组。这些子图可能是插图,绘图网格或其他更复杂的布局。在本节中,我们将探讨在 Matplotlib 中创建子图的四...
绘图图例标识离散点的离散标签。对于基于点,线条或区域颜色的连续标签,带标签的颜色条可能是一个很好的工具。在 Matplotlib 中,颜色条是一个单独的轴域,可以为绘图中的颜色含义提供见解。原书是黑白打印的,但是在线版本是...
绘图的图例将意义赋予可视化,为各种绘图元素标识意义。我们以前看过如何创建简单的图例;在这里,我们将介绍如何在 Matplotlib 中自定义图例的位置和样式。...
简单的直方图可能是理解数据集的第一步。之前,我们预览了 Matplotlib 直方图函数(参见“比较,掩码和布尔逻辑”),一旦执行了常规的导入,它在一行中创建一个基本直方图:...
有时,使用等高线或颜色编码的区域,在二维中显示三维数据是有用的。有三个 Matplotlib 函数可以帮助完成这个任务:`plt.contour用于等高线图,plt.contourf用于填充的等高线图,plt.imshow``用于显示图像。本节介绍使用这些的...