长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。...
用于解决输入数据为,序列到序列(时间序列)数据,不能在传统的前馈神经网络(FNN)很好应用的问题。时间序列数据是指在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度,即输入内容的上下文...
在快速发展的自然语言处理领域,Transformers 已经成为主导模型,在广泛的序列建模任务中表现出卓越的性能,包括词性标记、命名实体识别和分块。在Transformers之前,条件随机场(CRFs)是序列建模的首选工具,特别是线性链CRFs,...
人工神经网络(ANN)的设计灵感来源于人类大脑中神经元的工作方式。自从第一个感知器模型(Perceptron)被提出以来,人工神经网络已经经历了多次的演变和优化。...
摘要: 本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅...
几个月前以ChatGPT为首的内容生成式AI就已经火得不能再火了,然而,随着本周GPT-4和文心一言的发布,AI在国内外又“火上加火”了一次。
情感共鸣即在对话中能体现出来两个人的感情,它在心理咨询中被广泛应用,同时也是人类日常对话的一个关键特征。在深度学习这一大背景下,如何生成具有情感的对话回复呢?今天给大家分享的这篇文章,来自中科院,他们提出了一种串...
本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类(点击文末“阅读原文”获取完整代码数据)。
论文地址:https://arxiv.org/pdf/1807.08169v1.pdf
在最近的一篇文章中,我们展示了一个LSTM模型,通过假近邻(FNN)损失进行正则化,可以用来重建一个非线性动态系统 ( 点击文末“阅读原文”获取完整代码数据******** )。...