从早期的矩阵分解到最近出现的基于深度学习的方法,现有的工作通常通过从描述用户(或项目)的现有特性(如ID和属性)映射来获得用户(或项目)的嵌入。作者认为,这种方法的一个固有缺点是,隐藏在用户-项目交互中的协作信号没...
《Multi-view response selection for human-computer conversation》
情绪的感知与表达能力在对话领域中起到了至关重要的作用。Emotional Chatting Machine (ECM) 模型,将情绪信息引入到对话生成模型中,提升了对话中对情绪的表达能力并且使得生成的对话更为恰当,下图为本模型的总体框架:...
本文分享一篇 SIGIR 2021 最佳学生论文『Dynamic Modality Interaction Modeling for Image-Text Retrieval』,图像文本检索的动态模态交互建模。
目前,Transformer在计算机视觉方面取得了巨大的成功,但是如何在图像中更加有效的分割patch仍然是一个问题。现有的方法通常是将图片分成多个固定大小的patch,然后进行embedding,但这可能会破坏图像中的语义。...
之前咱们介绍过阿里的SIM,通过一种两阶段的方式来使用用户所有行为序列来提升点击率预估的精度。而最近阿里的最新的进展中,尝试将两阶段的处理方式升级为端到端的处理方式,相关的论文会在后续进行介绍。而今天,我们主要...
美团搜索排序是一个典型的多业务混合排序建模问题,这种多业务场景搜索存在很多挑战。本文聚焦到店商家多业务场景的多业务排序建模优化工作,希望能对从事相关工作的同学有帮助。...
今天分享的百度在SIGIR2021上中稿的一篇short paper,论文提出了结合门控机制的多任务学习模型(Gating-Enhanced Multi-Task Neural Networks,简称GemNN),一起来看一下。...
本文介绍Google新提出的一种名为"TeaForN"的缓解Exposure Bias现象的方案,来自论文《TeaForN: Teacher-Forcing with N-grams》,它通过嵌套迭代的方式,让模型能提前预估到后N个token(而不仅仅是当前要预测的token),其处理思...
Memory-efficient Embedding for Recommendations (WWW21)!