训练集上还没拟合得很好,测试集准确率已经低于训练集准确率大约2.5%了。这是同时存在欠拟合和过拟合呀!
本文介绍哈工大团队提出的一种动态ReLU(Dynamic ReLU)激活函数,即自适应参数化ReLU激活函数,原本是应用在基于一维振动信号的故障诊断,能够让每个样本有自己独特的ReLU参数,在2019年5月3日投稿至IEEE Transactions on Indus...
从以往的调参结果来看,过拟合是最主要的问题。本文在调参记录12的基础上,将层数减少,减到9个残差模块,再试一次。
本文在调参记录10的基础上,将残差模块的数量从27个增加到60个,测试采用自适应参数化ReLU(APReLU)激活函数的深度残差网络,在Cifar10图像集上的效果。...
本文在调参记录9的基础上,在数据增强部分添加了shear_range = 30,测试Adaptively Parametric ReLU(APReLU)激活函数在Cifar10图像集上的效果。
本文在调参记录6的基础上,继续调整超参数,测试Adaptively Parametric ReLU(APReLU)激活函数在Cifar10图像集上的效果。
【哈工大版】Dynamic ReLU:Adaptively Parametric ReLU及Keras代码(调参记录7)
本文介绍哈工大团队提出的一种Dynamic ReLU激活函数,即自适应参数化ReLU激活函数,原本是应用在基于振动信号的故障诊断,能够让每个样本有自己独特的ReLU参数,在2019年5月3日投稿至IEEE Transactions on Industrial Electr...
【哈工大版】Dynamic ReLU:Adaptively Parametric ReLU及Keras代码(调参记录4)
【哈工大版】Dynamic ReLU:自适应参数化ReLU及Keras代码(调参记录3)