本视频教程针对Windows平台,集成3.6版本Python的Anaconda录制。
看似无边无际、高深难懂而又时刻更新的数据科学知识,该怎样学才更高效呢?希望读过本文后,你能获得一些帮助。
不满意Jupyter Notebook只有Python 2环境,还打算让它支持Python 3与R?没问题,本文一步步帮助你实现这个愿望。
该配置版本最后更新的日期是今年七月,该更新版本允许本地使用 3 个不同的 GPU 加速后端,并添加对 MKL BLAS 库的支持。
推荐使用偷懒方法,比如安装miniconda软件,下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/ 这样就可以使用它安装绝大部分其它软件。
1.通过 Python 接口使用 OpenCV :https://blog.csdn.net/mzpmzk/article/details/68952160
如果在系统中安装使用GPU运行的TensorFlow,需要确保下面介绍的NVIDIA软件已经安装到系统中。
刚开始试了conda install py-xgboost,建议赶紧停下,不想你遇到那么多坑!
我把目标锁定在网易云音乐热门的华语男歌手、华语女歌手以及华语组合/乐队,每一类爬取20个热门歌手,这样我就有了60位歌手的信息。
最近在学习python,发现在本地搭建python环境的时候,要是想要同时搭建不同python版本的环境,就比较麻烦,很容易就出现冲突了,很是头疼。然后光明就出现这山重水复疑无路的时候,同事给我推荐了包管理以及环境管理神器:A...