上一章我们聊了聊通过一致性正则的半监督方案,使用大量的未标注样本来提升小样本模型的泛化能力。这一章我们结合FGSM,FGM,VAT看下如何使用对抗训练,以及对抗训练结合半监督来提升模型的鲁棒性。本章我们会混着CV和NLP一...
这个系列我们用现实中经常碰到的小样本问题来串联半监督,文本对抗,文本增强等模型优化方案。小样本的核心在于如何在有限的标注样本上,最大化模型的泛化能力,让模型对unseen的样本拥有很好的预测效果。之前在NER系列中我...
在深度学习方面,TensorFlow 和 PyTorch是绝对的王者。但是,但除了这两个框架之外,一些新生的框架也不容小觑,比如谷歌推出的 JAX深度学习框架。
[paper]DeepLab2: A TensorFlow Library for Deep Labeling [code]DeepLab2: A TensorFLow Library for Deep Labeling DeepLab2 是一个用于深度标注的 TensorFlow 库,旨在为密集像素标注任务提供统......
本文将在浏览器中定义、训练和运行模型。为了实现这一功能,我将构建一个识别鸢尾花的案例。
迁移学习是将预训练模型与自定义训练数据相结合的能力。这意味着你可以利用模型的功能并添加自己的样本,而无需从头开始创建所有内容。
⭐️ 本文首发自 前端修罗场,是一个由资深开发者独立运行的专业技术社区,我专注 Web 技术、答疑解惑、面试辅导以及职业发展。帮你评估知识点的掌握程度,获得更全面的学习指导意见,交个朋友,不走弯路,少吃亏!----最近公司在研...
向AI转型的程序员都关注了这个号
config = tf.ConfigProto(allow_soft_placement=True)
使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获!...