本文将介绍对Keras模型训练过程进行加速的方法。重点介绍Google 的Colab平台的免费GPU资源使用攻略。
本篇文章介绍在 Spark 中调用训练好的 TensorFlow 模型进行预测的方法。
深度学习的训练过程常常非常耗时,一个模型训练几个小时是家常便饭,训练几天也是常有的事情,有时候甚至要训练几十天。
动态计算图易于调试,编码效率较高,但执行效率偏低。静态计算图执行效率很高,但较难调试。
而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。
而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。
TensorFlow有5个不同的层次结构:即硬件层,内核层,低阶API,中阶API,高阶API。本章我们将以线性回归为例,直观对比展示在低阶API,中阶API,高阶API这三个层级实现模型的特点。...
TensorFlow有5个不同的层次结构:即硬件层,内核层,低阶API,中阶API,高阶API。本章我们将以线性回归为例,直观对比展示在低阶API,中阶API,高阶API这三个层级实现模型的特点。...
TensorFlow有5个不同的层次结构:即硬件层,内核层,低阶API,中阶API,高阶API。本章我们将以线性回归为例,直观对比展示在低阶API,中阶API,高阶API这三个层级实现模型的特点。...
在TensorFlow1.0时代,采用的是静态计算图,需要先使用TensorFlow的各种算子创建计算图,然后再开启一个会话Session,显式执行计算图。