大数据是一个大的数据集合,通过传统的计算技术无法进行处理。这些数据集的测试需要使用各种工具、技术和框架进行处理。大数据涉及数据创建、存储、检索、分析,而且它在数量、多样性、速度方法都很出色,是需要新处理模式...
场景描述:这是一个Spark的面试题合集。是我自己作为面试者和作为面试官都会被问到或者问到别人的问题,这个总结里面有大量参考了网上和书上各位老师、大佬的一些原文答案,只是希望可以给出更好的回答,一般上我都会把原文...
Horovod 是Uber于2017年发布的一个易于使用的高性能的分布式训练框架,在业界得到了广泛应用。
Spark发展至今,应该说已经非常成熟了。是大数据计算领域不得不学习的框架。尤其是Spark在稳定性和社区发展的成熟度方面,基本可以吊打其他的大数据处理框架。...
作者在实际工作中调研了Iceberg的一些优缺点和在各大厂的应用,总结在下面。希望能给大家带来一些启示。
本文基于 Apahce Spark 3.1.1 版本,讲述 AQE 自适应查询优化的原理,以及网易有数在 AQE 实践中遇到的痛点和做出的思考。
spark是借鉴了Mapreduce,并在其基础上发展起来的,继承了其分布式计算的优点并进行了改进,spark生态更为丰富,功能更为强大,性能更加适用范围广,mapreduce更简单,稳定性好。主要区别...
目前市面上流行的三大开源数据湖方案分别为:Delta、Iceberg 和 Hudi,但是 Iceberg是一个野心勃勃的项目,因为它具有高度抽象和非常优雅的设计,为成为一个通用的数据湖方案奠定了良好基础。目前 Flink+Iceberg 构建全场景...