在Spark框架当中,早期的设计由Spark Streaming来负责实现流计算,但是随着现实需求的发展变化,Spark streaming的局限也显露了出来,于是Spark团队又设计了Spark Structured Streaming。今天的大数据开发学习分享,我们就主要...
在大数据的诸多技术框架当中,Spark发展至今,已经得到了广泛的认可。Hadoop与Spark可以说是大部分企业级数据平台的主流选择,基于不同的应用场景,结合实际需求,来选择相应的技术架构。今天我们来聊聊Spark运行原理。...
Spark在大数据处理上的优势,很大一部分来自数据处理速度的提升,这使得Spark在面对大规模实时计算的数据任务时,能够更快地完成大批量数据的处理,提升大数据处理的效率。而Spark获得的这些优势,核心关键在于RDD,今天我们为大...
在大数据计算领域,先后出现了Hadoop、Spark、Storm、Flink等多个计算框架,并且每每当一个新兴计算引擎出现,大家就忍不住拿来与早期的计算引擎进行对比。然后就会出现诸如Flink会取代Spark吗,Flink和Spark哪个好等等的问...