在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类。重点讲述如何选择合适的k值。
在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的角度介绍如何使用这两个算法。由于scikit-learn中没有关联算法的类库,而Spark MLlib有,本文的...
在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题。这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解,但是计算量和处理速度...
机器学习是计算机科学、人工智能和统计学的研究领域。机器学习的重点是训练算法以学习模式并根据数据进行预测。机器学习特别有价值,因为它让我们可以使用计算机来自动化决策过程。...
可预见的未来数据分析和机器学习将成为工作中必备技能,也许已经在某个项目中讨论怎么调参优化,就像过去讨论如何优雅的写python、如何避免C++内存泄露一样常见。...
Skorch 是一个兼容 Scikit-Learn 的 PyTorch 神经网络库。
Lightning 稳定版本的预编译二进制文件在主要平台可用,需要用 pip 安装:
一个易于理解的scikit-learn教程,可以帮助您开始使用Python机器学习。
一个方便的scikit-learn备忘录,用于使用Python进行机器学习,包括代码示例。
资源文档:https://skorch.readthedocs.io/en/latest/?badge=latest 源代码https://github.com/dnouri/skorch/