深度学习在蛋白质结构预测和蛋白质设计方面的应用日益增多,设计出的蛋白质已进入临床试验阶段,甚至获得了美国FDA的批准。机器学习在加速设计过程、减少实现功能性蛋白质所需的实验测试变体数量方面有着巨大的潜力。随...
2024年2月21日,Nature Reviews Drug Discovery发表文章When can AI deliver the drug discovery hits,文章总结了CACHE竞赛的主要成果。
今天为大家介绍的是来自Zilong Wu , Daniel W. Armstrong, Herman Wolosker & Yuebing Zheng团队的一篇论文。小型代谢分子的手性在控制生理过程和指示人类健康状况方面非常重要。在多种疾病中,包括癌症、肾脏和脑部疾...
今天为大家介绍的是来自Jörg Kleeff的一篇短文。近年来,人工智能(AI)已成为我们生活中无处不在的元素。无论是在互联网上使用搜索引擎,发表或阅读社交媒体内容,还是使用交通工具,我们都在有意或无意地与AI技术互动。在临床...
今天为大家介绍的是来自Dylan Slack团队的一篇论文。人们越来越多地使用机器学习(ML)模型,但模型变得越来越复杂,难以理解。为了理解复杂的模型,研究人员提出了解释模型预测的技术。然而,实际操作中难以使用可解释性方法,因...
今天为大家介绍的是来自Mario Krenn团队的一篇论文。一个能够通过从科学文献中获取洞见来建议新的个性化研究方向和想法的工具,可以加速科学的进步。一个可能受益于这种工具的领域是人工智能(AI)研究,近年来科学出版物的...
今天为大家介绍的是来自Tiago Rodrigues团队的一篇论文。机器学习(ML)有望解决化学领域的重大挑战。尽管ML工作流程的适用性极广,但人们通常发现评估研究设计多种多样。目前评估技术和指标的异质性导致难以(或不可能)比较...
今天为大家介绍的是来自Fabian J. Theis & Nir Yosef团队的一篇论文。当前估算 RNA 流速的方法缺乏有效的策略来量化不确定性并确定其对感兴趣系统的整体适用性。在这里,作者介绍了 veloVI(velocity variational infere...
今天为大家介绍的是来自Kyunghyun Cho和Richard Bonneau团队的一篇论文。在生物技术领域,挖掘序列(sequence)、结构(structure)和功能(function)之间的关系,需要更好的方法来比对那些与已经标注的蛋白质序列相似度较低的蛋白...
今天为大家介绍的是来自Christoph Steinbeck团队的一篇论文。近几十年来,描述化学结构的出版物数量稳步增加。然而,目前大多数已发布的化学信息并未以机器可读的形式出现在公共数据库中。自动化信息提取的过程仍然是一...