使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行针对性的优化,最终达到大幅提升运行时效率
两个主要方面的业务: ⚫ 第一个、数据【ETL 处理】 ◼依据IP地址,调用第三方库解析为省份province和城市city; ◼将ETL后数据保存至PARQUET文件(分区)或Hive 分区表中; ⚫ 第二个、数据【业务报表】 ◼读取Hive Table中广告...
首先,这是一篇水文,但是作为一个系列的三胞胎之一,我觉得有必要通过一题多解来扩散一下思维,正所谓“条条大路通罗马”。
Hive作为大数据领域常用的数据仓库组件,在平时设计和查询时要特别注意效率。影响Hive效率的几乎从不是数据量过大,而是数据倾斜、数据冗余、job或I/O过多、MapReduce分配不合理等等。对Hive的调优既包含对HiveQL语句本...
hive -S -e 'select table_cloum from table' -S,终端上的输出不会有mapreduce的进度,执行完毕,只会把查询结果输出到终端上。