Flink 作业在开发完毕之后,需要提交到 Flink 集群执行。ClientFronted 是入口,触发用户开发的 Flink 应用 Jar 文件中的 main 方法,然后交给 PipelineExecutor(流水线执行器,在 FlinkClient 升成 JobGraph 之后,将作业提交...
状态在 Flink 中叫作 State,用来保存中间计算结果或者缓存数据。根据是否需要保存中间结果,分为无状态计算和有状态计算。对于流计算而言,时间持续不断地产生,如果每次计算都是相互独立的,不依赖于上下游的事件,则是无状态...
从大的方面来说,TaskManager进程的内存模型分为JVM本身所使用的内存和Flink使用的内存,Flink使用了堆上内存和堆外内存。
Flink首先会自动进行类型推断,但是对于一些带有泛型的类型,Java泛型的类型擦除机制会导致Flink在处理Lambda表达式的类型推断时不能保证一定能提取到类型。...
1)Tumble Count Window:累积固定个数的元素就视为一个窗口,该类型的窗口无法像时间窗口一样事先切分好。
Flink API提供了开发的接口,此外,为了实现业务逻辑,还必须为开发者提供自定义业务逻辑的能力。。Flink中设计了用户自定义函数体系(User Defined Function,UDF),开发人员实现业务逻辑就是开发UDF。...
Flink作为流批一体的计算引擎,其面对的是业务场景,面向的使用者是开发人员和运维管理人员。
无界数据是持续产生的数据,所以必须持续的处理无界数据流。因为输入是无限的,没有终止时间。处理无界数据通常要求以特定顺序获取,以便判断事件是否完整、有无遗漏。...
在Kafka生产者将数据写入至Kafka集群中时,为了能够在网络中传输数据对象,需要先将数据进行序列化处理,对于初学者来说,在初始化生产者对象时,一般都会采用默认的序列化器。默认的序列化器不会对数据进行任何操作,也不会生成...
讲到这里,xdm 会问,博主上面写的 3 种时间属性到底对我们的任务有啥影响呢?3 种时间属性的应用场景是啥?