本次我们来实现一个支持百万并发连接数的采集服务器,并且找到异步+ NIO 的编程方式和实时流模型的那些千丝万缕的联系。
后台很多小伙伴都在问Flink的学习路径,那么我们在学习Flink的时候,到底重点学习哪些东西呢?
目前开发Flink的方式有很多,一般来说都是开发同学写JAVA/SCALA/PYTHON项目,然后提交到集群上运行。这种做法较为灵活,因为你在代码里面可以写任务东西,什么维表JOIN、参数调优,都能很轻松的搞定。但是对开发同学的要求较高...
为什么要“大致”阅读,因为这些牛逼的框架都是层层封装,搞懂核心原理已经是很不易,更别谈熟读源码了。
如果idea环境,使用jdk1.8的话,可能会智能提示,让你把24行改与lambda表达式,看上去更清爽一些:
本文中关于将StreamTask中的线程模型更改为基于Mailbox的方法主要译自如下两处:
摘要:本文由快手实时计算负责人董亭亭分享,主要介绍快手基于 Flink 的持续优化与实践的介绍。内容包括:
Flink在处理流式任务的时候有很大的优势,其中windows等操作符可以很方便的完成聚合任务,但是Flink是一套独立的服务,业务流程中如果想使用需要将数据发到kafka,用Flink处理完再发到kafka,然后再做业务处理,流程很繁琐。...
本文是来自2019年Apache Flink Meetup深圳站的资料,作者是OPPO的大数据平台负责人,本文主要讲述了OPPO基于Flink如何构建实时数据仓库。
导读:今天主要和大家交流的是网易在数据湖Iceberg的一些思考与实践。从网易在数据仓库建设中遇到的痛点出发,介绍对数据湖Iceberg的探索以及实践之路。...