在模块化编程中,开发者将程序分解成离散功能块(discrete chunks of functionality),并称之为模块。 精心编写的模块提供了可靠的抽象和封装界限,使得应用程序中每个模块都具有条理清楚的设计和明确的目的。...
本文在调参记录23的基础上,增加卷积核的个数,最少是64个,最多是256个,继续测试深度残差网络+自适应参数化ReLU激活函数在cifar10数据集上的效果。
本文在调参记录21的基础上,增加卷积核的个数,也就是增加深度神经网络的宽度,继续尝试深度残差网络+自适应参数化ReLU激活函数在Cifar10数据集上的效果。...
本文在调参记录21的基础上,将残差模块的个数,从60个增加到120个,测试深度残差网络+自适应参数化ReLU激活函数在Cifar10图像集上的效果。
本文在调参记录20的基础上,将残差模块的个数,从27个增加到60个,继续测试深度残差网络ResNet+自适应参数化ReLU激活函数在Cifar10数据集上的表现。
在之前的调参记录18中,是将深度残差网络ResNet中的所有ReLU都替换成了自适应参数化ReLU(Adaptively Parametric ReLU,APReLU)。
由于调参记录18依然存在过拟合,本文将自适应参数化ReLU激活函数中最后一层的神经元个数减少为1个,继续测试深度残差网络+自适应参数化ReLU激活函数在Cifar10数据集上的效果。...
本文将残差模块的数量增加到27个。其实之前也这样做过,现在的区别在于,自适应参数化ReLU激活函数中第一个全连接层中的神经元个数设置成了特征通道数量的1/16。同样是在Cifar10数据集上进行测试。...
在调参记录16的基础上,增加了两个残差模块,继续测试其在Cifar10图像集上的效果。
在调参记录15的基础上,本文将第一个残差模块的卷积核数量,从16个增加到32个,同时将自适应参数化ReLU激活函数中第一个全连接层的神经元个数改成原先的1/16,继续测试其在Cifar10图像集上的效果。...