最新 最热

【深度学习实验】网络优化与正则化(三):随机梯度下降的改进——Adam算法详解(Adam≈梯度方向优化Momentum+自适应学习率RMSprop)

目前,研究人员通过大量实践总结了一些经验方法,以在神经网络的表示能力、复杂度、学习效率和泛化能力之间取得良好的平衡,从而得到良好的网络模型。本系列文章将从网络优化和网络正则化两个方面来介绍如下方法:...

2024-07-30
1

【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop

目前,研究人员通过大量实践总结了一些经验方法,以在神经网络的表示能力、复杂度、学习效率和泛化能力之间取得良好的平衡,从而得到良好的网络模型。本系列文章将从网络优化和网络正则化两个方面来介绍如下方法:...

2024-07-30
1

机器学习领域自适应学习domain adptation

训练数据和测试数据不一致,比如训练数据是黑白的,测试时彩色的,结果准确率非常低。 训练数据和测试数据有点差距的时候,能不能效果也能好呢?这就用到了领域自使用domain adptation...

2023-12-01
0