深度学习(Deep Learning)是一种基于人工神经网络的机器学习技术,通过构建多层神经网络模型来模拟人类大脑的思维方式。
在自然语言处理(NLP)领域,随着数据量的爆炸性增长和计算能力的不断提升,模型的复杂度和性能也在持续演进。传统的循环神经网络(RNN)和卷积神经网络(CNN)在处理长序列时遇到了诸多挑战,如梯度消失或梯度爆炸等问题。为了克服这...
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个...
《自然语言处理:大模型理论与实践》教材官网:https://nlp-book.swufenlp.group/
在当今人工智能的浪潮中,神经网络作为其核心驱动力之一,正以前所未有的速度改变着我们的世界。从图像识别到自然语言处理,从自动驾驶到医疗诊断,神经网络的应用无处不在。本文旨在深入探讨神经网络的各个方面,从基础概念到...
近日《生成式人工智能服务安全基本要求》正式发布,文件包括遵守法律法规、尊重社会公德、保护个人信息和隐私等,为人工智能开发者们设立明确的合规标准,也给与AI生成式产品进行大模型备案做出了指导。下面,众森企服小编给...
AI技术在提升用户体验方面发挥着至关重要的作用,它通过多种方式优化了用户与科技产品之间的互动,从而提升了整体的用户体验。以下是一些关键的应用方式:...
在自然语言处理(NLP)的领域中,Transformer 模型因其卓越的性能和广泛的应用而备受关注。自 2017 年被引入以来,Transformer 已经成为现代 NLP 系统的核心架构。本文将详细探讨 Transformer 模型的工作原理、核心组件及其...
这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。