目前,对于恶意流量的识别,基于机器学习的检测技术愈发成熟。然而在高吞吐量的网络中,它对于流量特征提取的效率低,检测精确度低,不能实现实时检测。且由于攻击者在流量中注入了噪声,导致包级特征和流级特征不再适用,因此传统...
在设备指纹技术介绍与综述(一)一文中,我们了解了设备指纹的用途、覆盖设备范围,以及部分外部行为数据的采集方式。在设备种类与应用环境极为丰富的当下,设备指纹技术不论在用途、研究范围、采集方式,亦或评估手段下都取得了...
来自Amazon,谷歌,Meta, Microsoft等的面试问题,本文接着昨天的文章整理了机器学习和深度学习的问题
Affinity Propagation Clustering(简称AP算法)是2007提出的,当时发表在Science上《single-exemplar-based》。特别适合高维、多类数据快速聚类,相比传统的聚类算法,该算法算是比较新的,从聚类性能和效率方面都有大幅度的提...
核心对象:若某个点的密度达到算法设定的阈值则其为核心点。(即 邻域内点的个数不少于minPts)
项目名称:基于互联网大数据的事件智能抓取和画像系统 项目成员:禹精华、刘可可、刘贤辉
本文为雷锋字幕组编译的技术博客,原标题The 5 Clustering Algorithms Data Scientists Need to Know,作者为George Seif。
按照个体(记录)的特征将它们分类,使同一类别内的个体具有尽可能高的同质性,而类别之间则具有尽可能高的异质性。 为了得到比较合理的分类,首先要采用适当的指标来定量地描述研究对象之间的联系的紧密程度。...
给定 K 值和 K 个初始类中心点,把每个点分到离其最近的类中心点所代表的类中,所有点分配完毕之后,根据一个类内的所有点重新计算该类的中心点(平均值),然后再迭代的进行分配点和更新类中心点的步骤,直至类中心点的变化很小,或...
图数据挖掘算法已经在很多领域得到应用,但大多数图数据挖掘算法都没有考虑到算法的公平性。在本篇综述中,我们首先系统梳理了图数据挖掘领域内常见的算法公平性的定义和对应的量化指标。在此基础上,我们总结出了一个图数...