产品的表面缺陷检测是近年来制造业中格外关注的一项技术问题。作为生产制造过程中必不可少的一步,表面缺陷检测广泛应用于各工业领域,包括3C、半导体及电子、汽车、化工、医药、轻工、军工等行业,催生了众多上下游企业。...
自组织映射神经网络(SOM)是一种无监督的数据可视化技术,可用于可视化低维(通常为2维)表示形式的高维数据集。在本文中,我们研究了如何使用R创建用于客户细分的SOM。...
EM 算法又叫做最大期望算法,英文名称为 Expectation Maximization,也是一种聚类算法。是一种迭代算法,通过寻找最大似然估计值,来确定聚类。
KNN是我们最常见的聚类算法,但是因为神经网络技术的发展出现了很多神经网络架构的聚类算法,例如 一种称为HNSW的ANN算法与sklearn的KNN相比,具有380倍的速度,同时提供了99.3%的相同结果。...
层次聚类假设类别之间存在层次结构,将样本聚到层次化的类中。所谓层次就是一层一层的进行聚类,可以采用自顶向下的聚类策略(分裂),也可以采用自下而上的策略(凝聚)。...
本文是SIGAI公众号文章作者雷明编写的《机器学习》课程新版PPT第四部分,包含了课程内容的深度学习概论,自动编码器,受限玻尔兹曼机,聚类算法1,聚类算法2,聚类算法3,半监督学习,强化学习的PPT,对算法进行了详尽的推导,并附以实验...
随着物联网设备的普及和人工智能技术的发展,越来越多的物联网设备及服务暴露在互联网中,这也导致其安全问题备受关注。物联网资产识别是物联网安全中必要且关键的一环,如果能够对暴露在外的物联网资产进行归纳梳理并分析...
k-means 聚类算法思想先随机选择k个聚类中心,把集合里的元素与最近的聚类中心聚为一类,得到一次聚类,再把每一个类的均值作为新的聚类中心重新聚类,迭代n次得到最终结果分步解析...
本文实例为大家分享了python实现mean-shift聚类算法的具体代码,供大家参考,具体内容如下
K-means:是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚点不一定是聚类中的一个点,该算法只能处理数值型数据。...