在本文中,作者提出了一种在线聚类方法,称为对比聚类(CC),它明确地执行实例级和集群级的对比学习。具体来说,对于给定的数据集,通过数据增广构造正实例对和负实例对,然后投影到特征空间中。其中,在行空间和列空间分别进行实例...
FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction论文摘要:
https://blog.csdn.net/huacha__/article/details/81094891
https://www.cnblogs.com/chenqionghe/p/12301905.html
Link:https://journals.asm.org/doi/epub/10.1128/msphere.00916-21
本文介绍了 5 大常用机器学习模型类型:集合学习算法,解释型算法,聚类算法,降维算法,相似性算法,并简要介绍了每种类型中最广泛使用的算法模型。我们希望本文可以做到以下三点: 1、应用性。 涉及到应用问题时,知识的普适性显然...
进化树在生物学中,用来表示物种之间的进化关系。生物分类学家和进化论者根据各类生物间的亲缘关系的远近,把各类生物安置在有分枝的树状的图表上,简明地表示生物的进化历程和亲缘关系。在进化树上每个叶子结点代表一个物...
为了消除数据特征之间的量纲影响,我们需要对特征进行归一化处理,使得不同指标之间具有可比性。例如,分析一个人的身高和体重对健康的影响,如果使用米(m)和千克(kg)作为单位,那么身高特征会在1.6~1.8m的数值范围内,体重特征会在50...
聚类是一种无监督机器学习方法,可以从数据本身中识别出相似的数据点。对于一些聚类算法,例如 K-means,需要事先知道有多少个聚类。如果错误地指定了簇的数量,则结果的效果就会变得很差(参见图 1)。...