谷歌作为联邦学习的提出者,在其深度学习框架TensorFlow的基础上开发出了一套联邦学习的框架Tensorflow Federated(后文简称TFF)。TFF是一个开源框架,用于机器学习和其他分散数据计算,其开发旨在促进联邦学习的研究。...
题目:Survey of Personalization Techniques for Federated Learning
论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0950705121000381
知乎 | https://www.zhihu.com/people/xu-xiu-jian-33
联邦学习(Federated Learning) 是人工智能的一个新的分支,这项技术是谷歌2016年于论文Communication-Efficient Learning of Deep Networks from Decentralized Data中首次提出。
今天跟大家分享一篇利用机器遗忘学习(Machine Unlearning)来选择性的忘掉某些特定数据进而完成带有隐私保护功能的推荐系统的文章。该文章发表在WWW2022会议上,是第一篇解决机器遗忘问题的推荐系统工作。该文提出了一种...
原文标题:Utility vs Understanding: the State of Machine Learning Entering 2022 原文作者:Aidan Cooper
2008年10月,化名为“中本聪”的学者在密码学论坛上公开了《比特币:一种点对点的电子现金系统》一文[1],提出了利用PoW和时间戳机制构造交易区块的链式结构,剔除了可信第三方,实现了去中心化的匿名支付。比特币于2009...
机器之心分析师网络作者:Jiying编辑:H4O本文对 NSF CISE CAREER 2022 年公开资助的一项与联邦学习相关的项目进行了分析,结合 PI 的相关研究背景,了解美国青年研究学者在该方面开展的研究工作。美国国家科学基金会(Nationa...
论文地址:https://ieeexplore.ieee.org/abstract/document/8803001